

Hands on Problem Solving

LUT Summer School July 25-29, 2016

Gaetano Cascini

Co-funded by the Erasmus+ Programme of the European Union

Introduction

WHERE ARE WE NOW?

Problem Framing and Idea Generation

Concept Formulation and Assessment

Outline

- Dealing with conflicting requirements
 - From the Network of Problems and Partial Solutions to TRIZ solving tools
 - Example strategies for overcoming design conflicts

Network of Problems and Partial Solutions

Theory of Inventive Problem Solving

The architecture of TRIZ is based on:

Three Postulates:

- Postulate of Objective Laws of Systems Evolution
- Postulate of Contradiction
- Postulate of Specific Situation

Main models:

- Models of the problem solving process
 - Hill model (abstraction-embodiment)
 - Tongs model (from current situation to ideality, barriers identification)
 - Funnel model
- Description of systems, problems, solutions
 - ENV model
 - Model of function
 - Substance-Field Model
 - Model of contradiction
- "System operator" (multi-screen approach)
 - Round about problems
 - Resources search

• Instruments:

- ARIZ (Algorithm of Inventive Problem Solving), main instrument of Classical TRIZ for Non-Typical Problems, which integrate all others TRIZ instruments
- System of Inventive Standard Solutions
- Pointers to Physical, Chemical, Geometrical Effects

Contradictions

 System evolution implies the resolution of contradictions, i.e. conflicts between a system and its environment or between the components of the system

Problems from different domains, sharing the same contradiction, can be solved by means of the same solving principles

Conclusions for practice:

- ❖ To solve a problem we should **first discover underlying contradictions**
- ❖ To achieve maximum benefits, contradictions should be resolved, not compromised
- Overcoming contradictions is a driving force behind technology evolution. Resolving contradictions, instead of compromising or optimizing, results in breakthrough solutions

Contradictions

Contradictions

Techniques to Resolve Physical Problems

- As a matter of principle, a physical contradiction can be resolved by three strategies:
 - Separation of the contradictory requirements (see Separation Principles)
 - Satisfaction of the contradictory requirements (by Technology Substitution)
 - Bypass the contradictory requirements

Separation in Space

Separating in space means answering to this question:

Separation "Do we really want the contradictory Feature of the Element to assume the value V and the value Λ in the whole Operational Zone of the Contradiction?"

If this answer is NO, a Separation in Space is a candidate direction for

solution.

Contradictory Requirement

Separation in Space

Separation

Separation

Contradictory Requirement

Separation in Time

Separating in time means answering to this question:

"Do we really want the contradictory Feature of the Element to assume the value V and the value Λ in the whole Operational Time of

the Contradiction?"

If this answer is NO, a Separation in Time is a candidate direction for solution.

Separation in Time

Separation

Contradictory Requirement

Separation upon Condition

Separating on condition means answering to this question:

"Do we really want the contradictory Feature of the Element to assume the value V and the value Λ under any operating condition?"

If this answer is NO, a Separation upon Condition is a candidate direction for solution.

Separation upon Condition

Separation

Separation between Macro and Micro Level

Separating between macro and micro level means answering to this question:

"Do we really want the contradictory Feature of the Element to assume the value V and the value Λ both at system level and in its parts/subsystems?"

If this answer is NO, a Separation between macro and micro level is a candidate direction for solution.

Separation between Macro and Micro Level

Separation Principles and Inventive Principles

In time: 15, 10, 19, 11, 16, 21, 26, 18, 37, 34, 9, 20

On condition: 35, 32, 36, 31, 38, 39, 28, 29

- Segmentation 1. Extraction 2.
- 3. Local Quality
- 4. Asymmetry
- 5. Consolidation
- Universality 6.
- 7. Nesting
- 8. Counterweight
- Prior Counteraction 9.
- 10. Prior Action
- 11. Cushion in Advance
- 12. Equipotentiality
- 13. Do It in Reverse
- 14. Spheroidality
- 15. Dynamicity

- 16. Partial or Excessive Action
- 17. Transition Into a New Dimension
- 18. Mechanical Vibration
- 19. Periodic Action
- 20. Continuity of Useful Action
- 21. Rushing Through
- 22. Convert Harm into Benefit
- 23. Feedback
- Mediator 24.
- Self Service 25.
- 26. Cop
- 27.
- 28.

30. Flexible Membranes or Thin Films

Construction

Pneumatic or Hydraulic

Separation

Contradictory Requirement

Porous Material 31.

29.

- 32. Changing the Color
- 33. Homogeneity
- Rejecting and Regenerating 34. Parts
- 35. Transformation of Properti

- Complete list and directions at:
- http://www.triz.co.kr/TRIZ/frame.html

Problems Decomposition With TRIZ

Identifying Contradictions from the **Network of Problems**:

TRIZ Model of Contradiction

Identifying Contradictions from the Network of Problems:

Separation

In space: Extra batteries around the waist / on the shoulder

In time: Modular batteries super-easy/fast to change

Upon condition: Customizable size of batteries according to...

Macro/Micro: Supersmall batteries distributed on the body surface

composite

Summing Up

Problem Framing

- When dealing with complex problems it is important to keep an overall view on the design task, still having the possibility to analyse the details
- Network of Problems and Partial Solutions can help, also to share tasks in a (large) team

Dealing with conflicting requirements

- Modelling a design problem in the form of contradiction is a way to identify the roots of the problem, as well as opportunity for generate solutions (and variants)
- Separating conflicting requirements is a universal strategy for solving contradictions
- When separation is (really) not applicable a major change is necessary (technology shift or bypass).

Task for Today Afternoon Session

- Revise your network of Pb and PS (and complete it if necessary)
- 2. Identify contradictions that most prevent your system to behave as an ideal system
 - Build a model of the contradiction;
 - Identify where and when the contradiction occurs;
 - Apply separation principles to overcome the contradiction;
 - Check for technological substitution suitable to fulfill the two sides of the contradiction;
 - Check for by-pass options at super-system level that make the contradiction disappear
- 3. Update the network of Pb and PS
 - Represent all the variants (alternative solutions) you identified for each problem and further emerging problems if any
- 4. Prepare the presentation of your partial results
 - Deliver a PPT to gaetano.cascini@polimi.it by 16:15
 - At least 2 (different) team members speaking
 - The presentation should last 7 minutes (or less)

Template for Contradiction Analysis

Template for Contradiction Analysis

Template for Contradiction Analysis

Separation

In space:_____

In time:_____

Upon condition:_____

Macro/Micro:

Gaetano Cascini

Full Professor

Coordinator of the Mechanical Engineering Study Programme

Ph. +39 02 2399 8463 Fax +39 02 2399 8282 Mob. +39 348 8605019 gaetano.cascini@polimi.it

Via G. La Masa, 1 20156 Milano - ITALY

