

Design for Additive Manufacturing

Uncover New Design Rules

Moscow - Vladimir Workshop November 14-19, 2016

Laboratoire G-SCOP/Université Grenoble Alpes- Grenoble INP

Co-funded by the Erasmus+ Programme of the European Union

Design Process

Design for Additive Manufacturing

New design rules

New forms

Functional Materials

Form opportunities

Needs, contraintes Solution search, Synthesis

Evaluation, Analysis

Prototyping opportunities

Form freedom

... Also induced constraints

Molded parts design rules

			1					
	structure			unfavourable	favourable	explanation		restrictions and recommendations
			general			•	part size must consider substrate plate dimensions rotate, scale or separate parts if necessary	max. part dimensions incl. substrate plate: x = ca. 250 mm, y = ca. 250 mm, z = ca. 215 mm (see machine manufacturers for more information; larger machines available)
		general part size	inclusion of substrate platform				integration of substrate platform into part possible reduction of manufacturing time and costs hybrid manufacturing approach	
TiAl6V4	art form	genera	inclusion pla			٠	radii at the interface part / substrate platform prevent part strip off during manufacturing process	the larger the interfaces layer, the larger the radius should be r=3-5 mm suitable for TiAl6V4
-1	general geometry / part form		height	h	h	•	part heigth in build up direction should equal multiple layer thicknesses	layer thickness: 20 - 50 µm TiAl6V4: 30 µm (see manufacturing machine documentation)
Design Process		integration	of functions			•	prefere integral part design reduction of manufacturing time	
		ies	volume			•	use cavities in order to reduce the part volume to be exposured reduction of manufacturing time and cost	
		cavities	design			•	avoid powder nesting by designing simple cavity geometries	

	stru	uctui	re	unfavourable favourable		explanation	restrictions and recommendations	
	general geometry / part form	cavities	emoval			 consider at least one opening the larger the opening, the more easy the powder removal is 	3 – 5 mm suitable for TiAl6V4	
			powder removal			use multiple openings at complex parts		
- TiAl6V4		naterial dist	accumulations			avoid material accumulation reduction of part volume reduces manufacturing time and costs		
Design Process			horizontal segments	^z		avoid horizonically postioned part segments highest thermally induced stresses worst surface quality		
Q		walls	und corners	dL.	di.	focal diameter of laser limits resolution in manufacturing plane sharp corners / edges not manufacturable		
		W	edges u			thermally induced stresses can lead to part failure during build process avoid notches in part design prefere round material transitions		

	~ t ==					avalanation			
	Stru	ıctu	re	unfavourable	explanation				
	gen. g	supports	massive supports			 consider massive supports for optimized heat flux and reduced part deformation during build up consider breakage points for easy removal 			
	consider for part design: final machining		allowance	target	allowance	consider adequate allowances in CAD design necessary allowance highly depending on final machining			
TiAl6V4		general	position			surfaces to be final machined should be lift from sourrounding part surfaces to be machined should be placed in one plane			
Design Process –			tooling points			 span and positioning points should be incorporated in part design allowing safe spanning for final machining and low part deformation place location loints in reference planes 			
Desig		al machining	turning/ milling			consider tooling run-outs and ensure accessibility as well as clearness			
	conside		al machini	final machini	al machini	al machinir	milling		
		fin	drilling			design bore diameters smaller than necessary and drill out during final machining if high accuracy is needed			

Other design rules examples

Group		Тур	Attribute	Description Regular	Design for manufacturi	ng	LS	LM	FDM
				Special	Unsuitable	Suitable			
Element	transitions	Firmly bonded elements	Thickness	Element transitions' thicknesses can be chosen freely as they do not influence element's form accuracies.		The state of the s	Х	Х	X
				Element transitions' thicknesses should be chosen so that the cross sectional areas in the building plane remain of the same size or become smaller.	$A_3 > A_1 + A_2$ A_1 Z A_2	$A_3 < A_1 + A_2$ A_1 Z A_2		Х	
			Edge	Sharp (outer and inner) edges should be avoided. In order to receive better form accuracies edges should be rounded. The rounding radii correlate with the outer radii of simple-curved elements.	Z	Z	X	X	X
				Edges that form vertical extreme points should be blunted parallel to the building plane. The dimensions of the blunted areas should be larger than non-curved elements' thicknesses.	Z	^Z	X	X	X

Group	Тур	Attribute	Description	Design for manufactu	ring	LS	LM	FDM
			Regular	Unsuitable	Suitable	_		
			Special					
Element transitions	Non-bonded elements	Gap width	If accessibility to the gap is given along the complete width, the gap width can be chosen freely.		b _G	Х	Х	X
		Gap length	Gaps' lengths need to be short enough to enable a robust removal of disperse support structures which are contained inside the gaps. LS: $l_G \le 8.0 \text{mm} (h_G = 1.2 \text{mm})$ $l_G \le 30.0 \text{mm} (h_G = 1.8 \text{mm})$ $l_G \le 50.0 \text{mm} (h_G = 2.4 \text{mm}) (\text{max. tested length})$ LM: $l_G \le 50.0 \text{mm} (h_G = 0.2 \text{mm}) (\text{max. tested length})$	- h _G		Х	х	
			tested length) Gaps' lengths can be chosen freely because no disperse support structures are contained inside the gaps.		- h _G			Х
Aggregated structures	Overhang	Length	Overhangs' lengths can be selected freely because required stabilizations of the overhangs are provided by the disperse support structures.		Z A	Х		
			Overhangs' lengths should be short enough to ensure a robust manufacturability given by part layers that do not bent out of the building plane (LM) or filaments that do not "fall off" their nominal positions (FDM). LM: $l_{Oh} \leq 2.0 \text{mm}$ FDM; $l_{Oh} \leq 1.8 \text{mm}$	Z A	Z		х	X

Think Out of the box...

Psychological inertia:

- "we have always done like that"
- "we are not allowed to to that"
- "I usually do like that"
- "in this company we do it that way" ...

Solution 1: rely on experts knowledge

But they also have there cognitive limits ...

Machined, Aluminium 7075, 52g

EBM, TA6V, 49g

Solution 2: Topological optimisation

Machined, Aluminium 7075, 52g

Solution 2: Topological optimisation

May be manufactured as is, but difficult to be accepted by people (psychological inertia again...)

EBM, TA6V, 29g!

Optimisation

General principles

- To minimise a function (mass, cost, ...) = objective fonction
- Problem variables (and limit values). Dimensions for example
- Constraintes = limitations of certain fonctions or its variables(s_{vm} < 200 MPa, T_{max} < 50°C...)

Mechanical example

- Minimise mass = f(b,h) = r.L.b.h
- 2 variables b [10 30mm] et h [15 25mm]
- $d_{max} = 1 \text{ mm} = g(b,h)$

Parametric Optimisation vs. Topological Optimisation

Topological Optimisation

• Variable -> material density ρ in each element of a FEM mesh

- Minimise mass -> $\int_{V} \rho . dV$
- Minimise compliance = energy -> $\int_{V} \sigma \cdot \epsilon \ dV$
- Compliance is expressed as a function of density : for example -> $E=E_0+\rho^n$ E_1

Example of a formulation of a topological optimisation problem

- Minimise compliance $\int_{V} \sigma \cdot \epsilon(\rho) dV$
 - With $\rho \in [0,1]$ for each element except BC where $\rho=1$

$$-\int_{V}\rho.\ dV$$

$$\nabla \sigma + F = 0$$

$$-\sigma = C.\varepsilon$$

Plus design constraints

Find minimum compliance

• Principle : example with 2 elements

Topology Optimization

Method to find the optimum material distribution in a given design space

1D ELEMENTS

Topology Optimization Process in Altair OptiStruct

Mesh generation, definition of loads and boundary conditions

Setup of optimization problem, definition of design constraints

Computation

Interpretation of results

Manufacturing Constraints: Minimum Member Size Control

- Input: approximate minimum diameter d in two dimensions (SI units)
- Works in 2D and 3D
- Controls the size of small structural features
- Controls "checkerboarding"
- Easier interpretation of the resulting layout
- Higher computation cost

Without min member size

- Difficult to manufacture due to micro structures
- · Results are mesh dependent

Manufacturing Constraints: Maximum Member Size Control

- Definition of maximum allowable structural member size
- Eliminates material concentrations
- Mesh considerations
 - Shell and solid elements
 - Tetrahedral and hexhedral
 - Min member > 3 X mesh size
 - Max member > 2 X min size

Manufacturing Constraints: Symmetry

- Load independent
- Mesh independent
- Geometry independent

Manufacturing Constraints: Pattern Repetition

Draw Direction Constraint

Example: Optimum Rib Pattern of a Control Arm

Without Draw Direction

With Draw Direction

Manufacturing

- Can we print directly an SO result?
 - Yes... but not relevant most of the time
- Simplification and cleaning is often necessary...
- ...And some verification/modification as well.
 - Will the final shape acceptable by the client?
 - Shall we be able to remove the supports?
 - Shal we be able to remove all the unused powder?
 - Will there be some weak points?

Topology optimisation

Non through-hole areas

1- « Integrated design » Identify groups of parts that can be combined in one single part

	original design	bionic design	integrated design* ("bracket" directly glued into honeycomb)		
bracketweight	330 g	195 g	0 g		
assembly weight	1.400 g incl. fiber mount and HiLocks	1.265 g incl. fiber mount and HiLocks	300 g		
dimensioning load case	35 kN	35 kN	35 kN		
weightsaving		135 g per bracket - 41%	1.100 g per assembly > - 80%		

2- « Individualization » : Complex part with high variability (often interface parts)

3 - « Lightweight Design » : Complex mobile parts

Bracket airbus A380 (EOS)

4 - « Efficient Design » : Part participating to mass, energy transmission or conversion

- « Integrated design »: Identify groups of parts that can be combined in one single part
- 2. « Individualization » : Complex part with high variability (often interface parts)
- 3. « Lightweight Design » : Complex mobile parts
- « Efficient Design » : Part participating to mass, energy transmission or conversion

Materials Dimension

The Materials in Additive Manufacturing

- The material is « built » at the same time as the part
- => Tight connexion product-material-process
- •Multi materials opportunities
- => alternate, and blend materials and filament

credit: NASA-JPL/Caltech

Architectured materials

• Best ratio mass/resistance

343 Mpa, 7,2 g

Architectured material

- Specific and « designed » properties
- Complex behavior (negative poisson ratio)

Architectured materials

Lighten structures

Porosity gradient

Scaffolds for Bones developmement

Lattice structures

Insert lattice structures in blind zones of topology optimisation

http://www.3ders.org/articles/20140915-futurist-christopher-barnatt-report-london-2014-3d-printshow.html

Design FOR Additive Manufacturing

New design rules

New forms

Functional Materials

Form opportunities

Needs, contraintes

Solution search, Synthesis

Possible solutions

Evaluation, Analysis

Prototyping opportunities

Complexity of numerical simulation

- Material modeling
- Importance of CL
- Geometric Singularities
- Many details
- Geometric uncertainties ...

Architectured materials Do we build what we calculate?

1mm strut Circular cross-section

Crédit SIMAP - Grenoble

How far from the ideal?

SEM micrograph

Alignement of neutral axis of strut with vertical

Geometry correction

Projection of pixel along the strut.

Inscribed cylinder: circular cylinder of same area than the inscribed surface

 $R_{\text{EQ}}^{\text{GEOM}}$ =radius of inscribed cylinder

Inscribed cylinder→ Mechanical properties

Crédit SIMAP - Grenoble

OIPEC

Equivalent diameter

Influence of orientation (EBM)

	Build orientation	R_{EQ}^{NUM} / R_{CAD}
Build direction		71%
		58.1%
Build		57.6%

Horizontal strut :

Larger cross-section due to over-melting→Higher stiffness

No change in stiffness for vertical and 45° strut

Equivalent diameter

structures

Different orientations

R_{EQ} depends on:

- fabrication direction
- CAD size
- Process parameter

 $R_{EQ}Horiz$

 $R_{EQ}45^{\circ}$

Conclusion

Take advantage of the form freedom offered by AM:

- Uncover new design rules
- Topoligical optimisation used
 - Optimisation require expertise
- Topological optimisatin + architectured materials = promising results
- Rapid access to prototyping even when simulation is complex

Design FOR **Additive Manufacturing**

New design rules

New forms

Functional Materials

Form opportunities

Needs, contraintes Solution search, **Synthesis**

Evaluation, Analysis

Prototyping opportunities

Franck POURROY -JF BOUJUT

Laboratoire G-SCOP/Université Grenoble Alpes- Grenoble INP

Laboratoire G-SCOP 46, av Félix Viallet 38031 Grenoble Cedex www.g-scop.inpg.fr

